LAKIREDDY BALIREDDY COLLEGE
OF ENGINEERING

DEPARTMENT
OF
COMPUTER SCIENCE & ENGINEERING

e
SOFTWARE ENGINEERING LAB
(20IT55)

LABORATORY MANUAL

B.Tech IV Sem CSE

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS)
Accredited by NAAC & NBA (Under Tier — 1) ISO 9001:2015 Certified Institution
Approved by AICTE, New Delhi. and Affiliated to INTUK, Kakinada
L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.
http://www.lbrce.ac.in, cselbreddy@gmail.com, Phone: 08659-222933, Fax: 08659-222931

http://www.lbrce.ac.in/
mailto:cselbreddy@gmail.com

Vision of the Department

The Computer Science & Engineering aims at providing continuously stimulating educational environment

to its students for attaining their professional goals and meet the global challenges.

Mission of the Department

e DMI1: To develop a strong theoretical and practical background across the computer science

discipline with an emphasis on problem solving.

e DM2: To inculcate professional behaviour with strong ethical values, leadership qualities, innovative

thinking and analytical abilities into the student.

e DM3: Expose the students to cutting edge technologies which enhance their employability and

knowledge.

o DMA4: Facilitate the faculty to keep track of latest developments in their research areas and encourage

the faculty to foster the healthy interaction with industry.

Program Educational Objectives (PEOs)

e PEOL1: Pursue higher education, entrepreneurship and research to compete at global level.

e PEO?2: Design and develop products innovatively in computer science and engineering and in other

allied fields.

e PEOZ3: Function effectively as individuals and as members of a team in the conduct of interdisciplinary

projects; and even at all the levels with ethics and necessary attitude.

e PEO4: Serve ever-changing needs of society with a pragmatic perception.

PROGRAMME OUTCOMES (POs):

PO1

Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex
engineering problems.

PO 2

Problem analysis: Identify, formulate, review research literature, and analyze
complex engineering problems reaching substantiated conclusions using first
principles of mathematics, natural sciences, and engineering sciences.

PO 3

Design/development of solutions: Design solutions for complex engineering
problems and design system components or processes that meet the specified needs
with appropriate consideration for the public health and safety, and the cultural,
societal, and environmental considerations.

PO 4

Conduct investigations of complex problems: Use research-based knowledge and
research methods including design of experiments, analysis and interpretation of data,
and synthesis of the information to provide valid conclusions.

PO 5

Modern tool usage: Create, select, and apply appropriate techniques, resources, and
modern engineering and IT tools including prediction and modeling to complex
engineering activities with an understanding of the limitations.

PO 6

The engineer and society: Apply reasoning informed by the contextual knowledge to
assess societal, health, safety, legal and -cultural issues and the consequent
responsibilities relevant to the professional engineering practice.

PO 7

Environment and sustainability: Understand the impact of the professional
engineering solutions in societal and environmental contexts, and demonstrate the
knowledge of, and need for sustainable development.

PO 8

Ethics: Apply ethical principles and commit to professional ethics and responsibilities
and norms of the engineering practice.

PO 9

Individual and team work: Function effectively as an individual, and as a member or
leader in diverse teams, and in multidisciplinary settings.

PO 10

Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend
and write effective reports and design documentation, make effective presentations,
and give and receive clear instructions.

PO 11

Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a
member and leader in a team, to manage projects and in multidisciplinary
environments.

PO 12

Life-long learning: Recognize the need for, and have the preparation and ability to
engage in independent and life-long learning in the broadest context of technological
change

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1

The ability to apply Software Engineering practices and strategies in software project
development using open-source programming environment for the success of
organization.

PSO 2

The ability to design and develop computer programs in networking, web applications
andloT as per the society needs.

PSO 3

To inculcate an ability to analyze, design and implement database applications.

List of Experiments

UML.:

Consider the following Case Studies:

1) Automated Teller Machine (ATM)

2) Library Management System

3) Railway Ticket Reservation System
4) Point-of-Sale Terminal

5) Customer Support Service Operations
6) Cab Booking Service

Week-1: Analyze the Requirements for the following Case Studies
1) Automated Teller Machine(ATM)

2) Library Management System
3) Railway Ticket Reservation System

Week-2: Analyze the Requirements for the following Case Studies
1) Point-of-Sale Terminal

2) Customer Support Service Operations
3) Cab Booking Service

Week-3: Basics of UML

1) Introduction to UML

2) Familiarization with any one of the Software such as Rational Rose or Umbrello or
Gliffy Diagram etc.

Week-4: For each case study given earlier, construct Use Case Diagram in the
following manner:

1) Identify and Analyze the Actors

2) ldentify the Actions

3) Analyze the Relationships between Actors and Actions

4) Sketch the Use Case Diagram

Week-5 and Week-6: For each case study given earlier, Construct Class and
Object Diagram in the following manner:

1) Identify and Analyze the Classes related to your problem

2) Analyze the Attributes and Operations

3) Analyze the Relationships between Classes

4) Sketch the Class Diagram

Week-7: For each case study given earlier, Construct Interaction Diagrams in the
following manner:

1) Identify the Objects participating in Communication
2) Identify the Messages between the objects
3) Give numbering to messages

4) Use Flat Sequencing or Procedural Sequencing for numbering.

Week-8: For each case study given earlier, Construct Activity Diagram in the following
manner:

1) Identify activities in your casestudy.
2) Identify relationships among activities.
3) Use Fork or Join, if necessary.

4) Sketch the diagram

Week-9: For each case study given earlier, Construct State Chart Diagram in the
following manner:

1) Identify the different states in your case study.

2) List out the different sub-states present in the state.

3) Identify relationships among the state to state.

4) Sketch the diagram.

Week-10:For each case study given earlier, Construct Component Diagram in
the following manner:

1) Identify the different components in your case study.
2) Create a visual for each of the component.
3) Describe the organization and relationships between components

using interfaces, ports etc.
4) Sketch the diagram

Week-11: For each case study given earlier, construct Deployment Diagram in the
following manner:

1) Identify the nodes.

2) Identify the relationships among the nodes.

3) Sketch the Diagram.

UML

What is UML?

"The Unified Modeling Language (UML) is a language for specifying, visualizing, constructing, and
documenting the artifacts of software systems, as well as for business modeling and other non-
software systems". OMG UML Specification

"UML is a graphical notation for modeling various aspects of software systems."

Why use UML?

Two questions, really:

1) Why use a graphical notation of any sort?

Facilitates construction of models that in turn can be used to:

Reason about system behavior.

Present proposed designs to others.

Document key elements of design for future understanding.

2) Which graphical notation should beused?

UML has become the de-facto standard for modeling object-oriented systems.
UML is extensible and method independent.

UML is not perfect, but it's good enough.

The Origins of UML

Obiject-oriented programming reached the mainstream of programming in the late 1980's and
early 1990's. The rise in popularity of object-oriented programming was accompanied by a
profusion of object-oriented analysis and design methods, each with its own graphical notation.
Three OOA/D gurus, and their methods, rose to prominence Grady BoochThe Booch
Method,JamesRumbaugh,etal. ObjectModelingTechnique, lvarJacsobson—Objectoryln1994,
BoochandRumbaugh,thenbothatRational,startedworkingonaunificationoftheirmethods. Afirst
draftoftheirUnifiedMethodwasreleasedinOctober1995.1n1996,(+/-)JacobsonjoinedBoochand
Rumbaugh at Rational; the name UML was coined. In 1997 the Object Management Group
(OMG)
acceptedUMLasanopenandindustrystandardvisualmodelinglanguageforobjectorientedsystems.
Current version of UML.is2.0.

UML DiagramTypes

There are several types of UML diagrams:
Use-case Diagram
Shows actors, use-cases, and the relationships between them.
Class Diagram
Shows relationships between classes and pertinent information about classes themselves.
Object Diagram
Shows a configuration of objects at an instant in time.
Interaction DiagramsShow an interaction between a group of collaborating objects. Two types:
Collaboration diagram and sequence diagram Package Diagram
Shows system structure at the library/package level.
State Diagram
Describes behavior of instances of a class in terms of states, stimuli, and transitions.
Activity Diagram

Very similar to a flowchart—shows actions and decision points, but with the ability to accommodate
concurrency.

Deployment Diagram
Shows configuration of hardware and software in a distributed system.

UML Modeling Types

It is very important to distinguish between the UML models. Different diagrams are used for
different type of UML modeling. There are three important type of UML modeling:

Structural modeling:

Structural modeling captures the static features of a system. They consist of the followings:

e C(lass diagrams

e Objectsdiagrams

e Deploymentdiagrams

® Packagediagrams

e Componentdiagrams
Structural model represents the framework for the system and this framework is the place where all
other components exist. So the class diagram, component diagram and deployment diagrams are the
part of structural modeling. They all represent the elements and the mechanism to assemble them.

But the structural model never describes the dynamic behavior of the system. Class diagram is the
most widely used structural diagram.

Behavioral Modeling

Behavioral model describes the interaction in the system. It represents the interaction among the
structural diagrams.Behavioralmodelingshowsthedynamicnatureofthesystem.Theyconsistofthe
following:

e Activitydiagrams

e Interactiondiagrams

® Use casediagrams
All the above show the dynamic sequence of flow in a system.

Architectural Modeling

Architectural model represents the overall framework of the system. It contains both structural and
behavioral elements of the system. Architectural model can be defined as the blue print of the entire
system. Package diagram comes under architectural modeling.

UML Basic Notations

UML is popular for its diagrammatic notations. We all know that UML is for visualizing,
specifying, constructing and documenting the components of software and non software systems.
Here the Visualization is the most important part which needs to be understood and remembered by
heart.UML notations are the most important elements in modelling. Efficient and appropriate use of
notations is very important for making a complete and meaningful model. The model is useless unless
its purpose is depicted properly.

So learning notations should be emphasized from the very beginning. Different notations are
available for things and relationships. And the UML diagrams are made using the notations of things
and relationships. Extensibility is another important feature which makes UML more powerful and
flexible.

Structural Things
Graphical notations used in structural things are the most widely used in UML. These are considered
as the nouns of UML models. Following are the list of structural things.
e C(lasses
e Interface

Collaboration
Usecase
Activeclasses
Components
Nodes

Class Notation:
UML class is represented by the diagram shown below. The diagram is divided into four parts.
® The top section is used to name theclass.
The second one is used to show the attributes of theclass.

[]
e The third section is used to describe the operations performed bytheclass.
e The fourth section is optional to show anyadditionalcomponents.

Class

Visibility Student PR
Publi¢~—————— + name : Sfring
Protected—+— #roll : Integer Attributes
Private——1—p - section ; String
+ Display ()

- Add () 4 Operations
- Edit ()
#Delete ()
Responsibilities
-- Manage student in a class ¢}——— Extra component
(This is not mandatory)

Name

3

Classes are used to represent objects. Objects can be anything having properties and responsibility.

Object Notation:

The object is represented in the same way as the class. The only difference is the name which is
underlined as shownbelow:

Student
+ name : String
roll : Integer
- section : String
+ Display ()
- Add ()
- Edit ()
Delete ()

As object is the actual implementation of a class which is known as the instance of a class. So it has
the same usage as theclass.

Interface Notation:
Interface is represented by a circle as shown below. It has a name which is generally written below

the circle.
Interfaceisusedtodescribefunctionalitywithoutimplementation.Interfaceisthejustlikeatemplatewhere
Interface

StudentApplication «————Name
youdefinedifferentfunctionsnottheimplementation.Whenaclassimplementstheinterface it also
implements the functionality as pertherequirement.

Collaboration Notation:
Collaboration is represented by a dotted eclipse as shown below. It has a name written inside the
eclipse.
Collaboration

//—"’_‘ﬁ‘\
o e

7
- ~

-

Additional components can
be used for clarification

Collaboration represents responsibilities. Generally responsibilities are in a group.

Use case Notation:
Use case is represented as an eclipse with a name inside it. It may contain additional responsibilities.

Use case

Register Student Name

Additional components can
be used for clarification

Use case is used to capture high level functionalities of a system.

Actor Notation:
An actor can be defined as some internal or external entity that interacts with the system.

actor

Actor is used in a use case diagram to describe the internal or external entities.
Initial State Notation:
Initial state is defined show the start of a process. This notation is used in almost all diagrams.

®
%

Initial
state

The usage of Initial State Notation is to show the starting point of a process.

Final State Notation:
Final state is used to show the end of a process. This notation is also used in almost all diagrams to

describe the end.
@

Final state

The usage of Final State Notation is to show the termination point of a process.

Active class Notation:
Active class looks similar to a class with a solid border. Active class is generally used to describe
concurrent behavior of a system.

Active Class

School «——F——— Name

+ name : String
+ address: String

+ addDepartment () ¢——————Operations

Attributes

Active class is used to represent concurrency in a system.

Component Notation:
A component in UML is shown as below with a name inside. Additional elements can be added
wherever required.

Component
Name
nstltutio#-
Additional
components can
be added

Component is used to represent any part of a system for which UML diagrams are made.

Node Notation:
A node in UML is represented by a square box as shown below with a name. A node represents a

physical component of the system.
Node

Server « Name

Node is used to represent physical part of a system like server, network etc.

Behavioural Things:

Dynamicpartsareoneofthemost important elements inUML.UMLhasasetofpowerfulfeaturesto
representthedynamicpartofsoftwareandnon-softwaresystems.Thesefeaturesincludeinteractions and
statemachines.

Interactions can be of two types:
e Sequential (Represented by sequencediagram)
e Collaborative (Represented by collaborationdiagram)

Interaction Notation:
Interaction is basically message exchange between two UML components. The following diagram
represents different notations used in an interaction.
Object

User begin by .
selecting ‘Detect | :COceanWorksDoc :CTargetDetector | :OceanWorkProgressBar
Ships' menu
|]

option

'\\\\\ i

OnShipdetectionDd DoShipDetection()
etectships () lifeline
loop
Self call o=

call *[For each :
DetermineTile £i1ed]
message Size()]
niPregressBar()

recursicn

Interaction is used to represent communication among the components of a system.

State machine Notation:

State machine describes the different states of a component in its life cycle. The notations are
described in the following diagram

Statemachine issued todescribedifferentstatesofasystemcomponent.Thestatecanbeactive,idle
or any other depending upon thesituation.

Money withdrawal from ATM

Initial state Intermediate Transition
of the object / state /
Insert Mormal
exit
card

Insert PIN number Select from menu

Abnormal Confirm by
exit pushing menu
o 1
Initial ?‘“:";t?“ (Event)
state {Fasre
Confirmation
Final Complete
state transaction
Grouping Things:

Organizing the UML models are one of the most important aspects of the design. In UML there is only
one element available for grouping and that is package.

Package Notation:
Package notation is shown below and this is used to wrap the components of a system.

Name

Package

]

Compoments

.

Additional components can
be used for clarification

Annotational Things:
In any diagram explanation of different elements and their functionalities are very important. So UML
has notes notation to support this requirement.

Note Notation:
This notation is shown below and they are used to provide necessary information of a system.

Note is added here for additional information B‘

Note

Relationships

A model is not complete unless the relationships between elements are described properly. The
Relationship gives a proper meaning to an UML model. Following are the different types of
relationships available in UML.

e Dependency

® Association
e Generalization
[]

Extensibility

Dependency Notation:
Dependency is an important aspect in UML elements. It describes the dependent elements and the
direction of dependency. Dependency is represented by a dotted arrow as shown below. The arrow
head represents the independent element and the other end the dependent element.

Name

Name of the element
Dependent ~ === == mmmm e ——— >Independent

Dependency is used to represent dependency between two elements of a system.

Association Notation:
AssociationdescribeshowtheelementsinanUMLdiagramareassociated.Insimpleworditdescribes how
many elements are taking part in aninteraction.

Association is represented by a dotted line with (without) arrows on both sides. The two ends
represent two associated elements as shown below. The multiplicity is also mentioned at the ends (1,
* etc) to show how many objects areassociated.

Navigation Multiplicity

Name
Employee €« - ——— - -+ Association- - - -

---»0rganization

Association is used to represent the relationship between two elements of a system.

Generalization Notation:
Generalization describes the inheritance relationship of the object oriented world. It is parent and

child relationship.
Generalization is represented by an arrow with hollow arrow head as shown below. One end
represents the parent element and the other end child element.

Child Parent
Generalization {>

Generalization is used to describe parent-child relationship of two elements of a system.

Extensibility Notation:
All the languages (programming or modelling) have some mechanism to extend its capabilities like
syntax, semantics etc. UML is also having the following mechanisms to provide extensibility features.
e Stereotypes (Represents newelements)
e Tagged values (Represents newattributes)

e Constraints (Represents theboundaries)

Tagged
value
Model no/«- Stereotypes
(version=1.2) Constraint
Name &4
Price
RA . c
Add() {Selling volume in T
Delete() months}

Extensibility notations are used to enhance the power of the language. It is basically additional
elements used to represent some extra behavior of the system. These extra behaviors are not covered
by the standard available notations.

UML Class Diagram
The class diagram is a static diagram. It represents the static view of an application. Class
diagramisnotonlyusedforvisualizing,describinganddocumentingdifferentaspectsofasystembut also for
constructing executable code of the softwareapplication.

The class diagram describes the attributes and operations of a class andalso the constraints
imposed on the system. The class diagrams are widely used in the modelling of object oriented
systems because they are the only UML diagrams which can be mapped directly with object oriented
languages.

The class diagram shows a collection of classes, interfaces, associations, collaborations and
constraints. It is also known as a structural diagram.

Purpose:

The purpose of the class diagram is to model the static view of an application. The class
diagramsaretheonlydiagramswhichcanbedirectlymappedwithobjectorientedlanguagesandthus
widely used at the time ofconstruction.

TheUMLdiagramslikeactivitydiagram,sequencediagramcanonlygivethesequenceflowoftheapp
licationbutclassdiagramisabitdifferent.Soitisthem Ost popularUMLdiagram inthecoder community.

So the purpose of the class diagram can be summarized as:

Analysisanddesignofthestaticview ofanapplication.
Describe responsibilities of asystem.

Base for component anddeploymentdiagrams.

Forward and reverseengineering.

How to draw Class Diagram?

Class diagrams are the most popular UML diagrams used for construction of
software applications. So it is very important to learn the drawing procedure of
class diagram.

Class diagrams have lot of properties to consider while drawing but here the diagram will be
considered from a top-level view.

Class diagram is basically a graphical representation of the static view of the system and
represents different aspects of the application. So a collection of class diagrams represent the whole
system.

The following points should be remembered while drawing a class diagram:

e Thenameoftheclassdiagramshouldbemeaningfultodescribetheaspectofthesystem.

e Eachelementandtheirrelationshipsshouldbeidentifiedinadvance.

e Responsibility(attributesandmethods)ofeachclassshouldbeclearlyidentified.

e For each class minimum number of properties should be specified. Because unnecessary
properties will make the diagramcomplicated.

e Use notes whenever required to describe some aspect of the diagram. Because at theend
of the drawing it should be understandable tothedeveloper/coder.

e Finally,beforemakingthefinalversion,thediagramshouldbedrawnonplainpaperand
rework as many times as possible to makeitcorrect.

Now the following diagram is an example of an Order System of an application. So it describes a
particular aspect of the entire application.
e Firstof all Order and Customer are identified as the two elements of the system and they
haveaonetomanyrelationshipbecauseacustomercanhavemultipleorders.
e We would keep Order class is an abstract class and it has two concrete classes (inheritance
relationship) SpecialOrder andNormalOrder.
e The two inherited classes have all the properties as the Order class. In addition,
theyhave additional functions like dispatch () andreceive().

UML Object Diagram

Objectdiagramsarederivedfromclassdiagramssoobjectdiagramsaredependentuponclass
diagrams.

Object diagrams represent an instance of a class diagram. The basic concepts are similar for
class diagrams and object diagrams. Object diagrams also represent the static view of a system but
this static view is a snapshot of the system at a particular moment.

Object diagrams are used to render a set of objects and their relationships as an instance.
Purpose:

The purpose of a diagram should be understood clearly to implement it practically. The
purposes of object diagrams are similar to class diagrams.

The difference is that a class diagram represents an abstract model consists of classes and
their relationships. But an object diagram represents an instance at a particular moment which is
concrete in nature.

It means the object diagram is more close to the actual system behavior. The purpose is to
capture the static view of a system at a particular moment.
So the purpose of the object diagram can be summarized as:

Forward and reverseengineering.
Object relationships of a system.
Static view of aninteraction.

Understandobjectbehaviourandtheirrelationshipfrompracticalperspective.

How to draw Object Diagram?

We have already discussed that an object diagram is an instance of a class diagram. It implies
that an object diagram consists of instances of things used in a class diagram.

So both diagrams are made of same basic elements but in different form. In class diagram
elements are in abstract form to represent the blue print and in object diagram the elements are in
concrete form to represent the real world object.

To capture a particular system, numbers of class diagrams are limited. But if we consider
objectdiagramsthenwecanhaveunlimitednumberofinstanceswhichareuniqueinnature. So only those
instances are considered which are having impact on thesystem.

From the above discussion it is clear that a single object diagram cannot capture all the
necessary instances or rather cannot specify all objects of a system. So the solution is:

e First,analyzethesystemanddecidewhichinstancesarehavingimportantdataand
association.
e Second, consider only those instances which will coverthefunctionality.

e Third,makesomeoptimizationasthenumbersofinstancesareunlimited.
Before drawing an object diagrams the following things should be remembered and
understood clearly:
® Object diagrams are consist ofobjects.
e Thelinkinobjectdiagram issued toconnectobjects.
® Objects and links are the two elements used to construct anobjectdiagram.
Now after this the following things are to be decided before starting the construction of the
diagram:
® Theobjectdiagramshouldhaveameaningfulnametoindicateitspurpose.
The most important elements are tobeidentified.
The association among objects shouldbeclarified.

Valuesofdifferentelementsneedtobecapturedtoincludeintheobjectdiagram.

Add proper notes at points where more clarity is required.

The following diagram is an example of an object diagram. It represents the Order
management system which we have discussed in Class Diagram. The following diagram is an instance
of the system at a particular time of purchase. It has the following objects

Customer

Order

SpecialOrder

NormalOrder

Now the customer object (C) is associated with three order objects (01, 02 and 03). These
order objects are associated with special order and normal order objects (S1, S2 and N1). The

customer is having the following three orders with different numbers (12, 32 and 40) for the
particular time considered.

Now the customer can increase number of orders in future and in that scenario the object
diagram will reflect that. If order, special order and normal order objects are observed then we you
will find that they are having some values.

Forordersthevaluesare12,32,and40whichimpliesthattheobjectsarehavingthesevalues for the
particular moment (here the particular time when the purchase is made is considered as the moment)
when the instance iscaptured.

The same is for special order and normal order objects which are having number of orders as
20, 30 and 60. If a different time of purchase is considered then these values will change accordingly.
So the following object diagram has been drawn considering all the points mentioned above:

UML Component Diagram

Component diagrams are different in terms of nature and behaviour. Component diagrams
are used to model physical aspects of a system.
Now the question is what are these physical aspects? Physical aspects are the elements like
executables, libraries, files, documents etc which resides in a node.
So component diagrams are used to visualize the organization and relationships among
components in a system. These diagrams are also used to make executable systems.
Purpose:

ComponentdiagramisaspecialkindofdiagraminUML.Thepurposeisalsodifferentfromall other
diagrams discussed so far. It does not describe the functionality of the system but it describes the
components used to make thosefunctionalities.

So from that point component diagrams are used to visualize the physical components in a
system. These components are libraries, packages, files etc.

Component diagrams can also be described as a static implementation view of a system.
Static implementation represents the organization of the components at a particular moment.A
single component diagram cannot represent the entire system but a collection of diagrams are
used to represent the whole.

So the purpose of the component diagram can be summarized as:
e Visualize the components of asystem.

e Construct executables by using forward andreverseengineering.
® Describe the organization and relationships of thecomponents.

How to draw Component Diagram?

Component diagrams are used to describe the physical artifacts of a system. This artifact
includes files, executables, libraries etc.

So the purpose of this diagram is different, Component diagrams are used during the
implementation phase of an application. But it is prepared well in advance to visualize the
implementation details.

Initially the system is designed using different UML diagrams and then when the artifacts are
ready component diagrams are used to get an idea of the implementation.

This diagram is very important because without it the application cannot be implemented
efficiently. A well prepared component diagram is also important for other aspects like application
performance, maintenance etc.

So before drawing a component diagram the following artifacts are to be identified clearly:
e Files used in thesystem.

e Libraries and other artifacts relevant to theapplication.
e Relationships among theartifacts.
Now after identifying the artifacts the following points needs to be followed:
e Use a meaningful name to identify the component for which the diagram is tobedrawn.
® Prepare a mental layout before producingusingtools.
e Use notes for clarifying importantpoints.

The following is a component diagram for order management system. Here the artifacts are
files.Sothediagramshowsthefilesintheapplicationandtheirrelationships.lnactualthecomponent
diagram also contains files, libraries, foldersetc.
In the following diagram four files are identified and their relationships are produced. Component
diagram cannot be matched directly with other UML diagrams discussed so far. Because it is drawn
for completely different purpose.

UML Deployment Diagram

Deployment diagrams are used to visualize the topology of the physical components of a
system where the software components are deployed.

So deployment diagrams are used to describe the static deployment view of a system.
Deployment diagrams consist of nodes and their relationships.
Purpose:

The name Deployment itself describes the purpose of the diagram. Deployment diagramsare
usedfordescribingthehardwarecomponentswheresoftwarecomponentsaredeployed.Component
diagrams and deployment diagrams are closelyrelated.

Component diagrams are used to describe the components and deployment diagrams shows
how they are deployed in hardware.

UMLismainlydesignedtofocusonsoftwareartifactsofasystem.Butthesetwodiagramsare special
diagrams used to focus on software components and hardwarecomponents.

So most of the UML diagrams are used to handle logical components but deployment
diagramsaremadetofocusonhardwaretopologyofasystem.Deploymentdiagramsareusedbythe
systemengineers.

The purpose of deployment diagrams can be described as:
e Visualize hardware topology of asystem.
o Describe the hardware components used to deploy softwarecomponents.

e Describe runtime processingnodes.

How to draw Deployment Diagram?

Deployment diagram represents the deployment view of a system. It is related to the
component diagram. Because the components are deployed using the deployment diagrams. A
deployment diagram consists of nodes. Nodes are nothing but physical hardwareused to deploy the
application.

Deployment diagrams are useful for system engineers. An efficient deployment diagram is
very important because it controls the following parameters

e Performance

e Scalability
e Maintainability
e Portability
So before drawing a deployment diagram the following artifacts should be identified:
e Nodes

e Relationships amongnodes
The following deployment diagram is a sample to give an idea of the deployment view of order
management system. Here we have shown nodes as:

e Monitor

e Modem
e Cachingserver
® Server

The application is assumed to be a webbased application which is deployed in a clustered
environment using server 1, server 2 and server 3. The user is connecting to the application using
internet. The control is flowing from the caching server to the clustered environment.

UML Use Case Diagram

To model a system the most important aspect is to capture the dynamic behaviour. To clarify
a bit in details, dynamic behaviour means the behaviour of the system when it is running /operating.
So only static behaviour is not sufficient to model a system rather dynamic behaviour is more
important than static behaviour. In UML there are five diagrams available to model dynamic nature
andusecasediagramisoneofthem.Nowaswehavetodiscussthat theusecasediagramisdynamic in nature
there should be some internal or external factors for makingtheinteraction.
These internal and external agents are known as actors. So use case diagrams are consists of

actors, use cases and their relationships. The diagram is used to model the system/subsystem of an
application. A single use case diagram captures a particular functionality of a system.

So to model the entire system numbers of use case diagrams are used.

Purpose:

The purpose of use case diagram is to capture the dynamic aspect of a system. But this
definition is too generic to describe the purpose.

Becauseotherfourdiagrams(activity,sequence,collaborationandStatechart)arealsohaving
thesamepurpose.Sowewilllookintosomespecificpurposewhichwilldistinguishitfromotherfour
diagrams.

Use case diagrams are used to gather the requirements of a system including internal and
external influences. These requirements are mostly design requirements. So when a system is
analyzed to gather its functionalities use cases are prepared and actors are identified.

Now when the initial task is complete use case diagrams are modelled to present the outside
view. So in brief, the purposes of use case diagrams can be as follows:

e Used to gather requirements of asystem.

e Used to get an outside view ofasystem.
e |dentify external and internal factors influencing thesystem.

e Show the interacting among the requirements areactors.

How to draw Use Case Diagram?

Use case diagrams are considered for high level requirement analysis of a system. So when
the requirements of a system are analyzed the functionalities are captured in use cases.

So we can say that uses cases are nothing but the system functionalities written in an
organized manner. Now the second things which are relevant to the use cases are the actors. Actors
can be defined as something that interacts with the system.

The actors can be human user, some internal applications or may be some external
applications. So in a brief when we are planning to draw an use case diagram we should have the
following items identified.

e Functionalities to be represented as an usecase
® Actors

e Relationships among the use cases andactors.

Use case diagrams are drawn to capture the functional requirements of a system. So after
identifying the above items we have to follow the following guidelines to draw an efficient use case
diagram.

e Thenameofausecaseisveryimportant.Sothenameshouldbechoseninsuchawayso that it
can identify the functionperformed.
® Give a suitable name foractors.

Show relationships and dependencies clearly inthediagram.

e Do not try to include all types of relationships. Because the main purpose of the diagram is
to identifyrequirements.
e Use note when ever required to clarify someimportantpoints.

Thefollowingisasampleusecasediagramrepresentingtheordermanagementsystem.Soif we
look into the diagram then we will find three use cases (Order, SpecialOrder and NormalOrder) and
one actor which iscustomer.

TheSpecialOrderandNormalOrderusecasesareextendedfromOrderusecase.Sotheyhave
extends relationship. Another important point is to identify the system boundary which is shown in
thepicture. TheactorCustomerliesoutsidethesystemasitisanexternaluserofthesystem.

UML Interaction Diagram
From the name Interaction it is clear that the diagram is used to describe some type of

interactions among the different elements in the model. So this interaction is a part of dynamic
behaviour of the system.

ThisinteractivebehaviourisrepresentedinUMLbytwodiagramsknownasSequencediagram
andCollaborationdiagram.Thebasicpurposesofboththediagramsaresimilar.

Sequence diagram emphasizes on time sequence of messages and collaboration diagram
emphasizes on the structural organization of the objects that send and receive messages.

Purpose:

Thepurposesofinteractiondiagramsaretovisualizethe interactivebehaviourofthesystem. Now
visualizing interaction is a difficult task. So the solution is to use different types of models to capture
the different aspects of theinteraction.

That is why sequence and collaboration diagrams are used to capture dynamic nature but
from a different angle.

So the purposes of interaction diagram can be describes as:
e To capture dynamic behaviour of asystem.

e To describe the message flow inthesystem.
e To describe structural organization of theobjects.
® To describe interaction amongobjects.

How to draw Interaction Diagram?

As we have already discussed that the purpose of interaction diagrams are to capture the
dynamicaspectofasystem.Sotocapturethedynamicaspectweneedtounderstandwhatadynamic aspect
is and how it is visualized. Dynamic aspect can be defined as the snapshot of the running system at a
particularmoment.

WehavetwotypesofinteractiondiagramsinUML. Oneissequencediagram andtheother s
acollaborationdiagram.Thesequencediagramcapturesthetimesequenceofmessageflowfromone
object to another and the collaboration diagram describes the organization of objects in a system
taking part in the messageflow.

So the following things are to identified clearly before drawing the interaction diagram:
® Objects taking part in theinteraction.
® Message flows among theobjects.
e The sequence in which the messages areflowing.
® Objectorganization.

Following are two interaction diagrams modelling order management system. The first

diagram is a sequence diagram and the second is a collaboration diagram.
The Sequence Diagram:

The sequence diagram is having four objects (Customer, Order, SpecialOrder and
NormalOrder).

ThefollowingdiagramhasshownthemessagesequenceforSpecialOrderobjectandthesame can
be used in case of NormalOrder object. Now it is important to understand the time sequence of
messageflows. Themessageflowisnothingbutamethodcall ofanobject.

ThefirstcallissendOrder()whichisamethodofOrderobject.Thenextcallisconfirm()which is a
method of SpecialOrder object and the last call is Dispatch () which is a method of SpecialOrder
object.Soherethediagramismainlydescribingthemethodcallsfrom oneobject toanotherandthis is also
the actual scenario when the system isrunning.

The Collaboration Diagram:
The second interaction diagram is collaboration diagram. It shows the object organization as
shown below. Here in collaboration diagram the method call sequence is indicated by some
numbering technique as shown below. The number indicates how the methods are called one after
another. We have taken the same order management system to describe the collaboration diagram.
The method calls are similar to that of a sequence diagram. But the difference is that the
sequence diagram does not describe the object organization where as the collaboration diagram

shows the object organization.
Now to choose between these two diagrams the main emphasis is given on the type of
requirement. If the time sequence is important then sequence diagram is used and if organization is

required then collaboration diagram is used.

UML Statechart Diagram

The name of the diagram itself clarifies the purpose of the diagram and other details. It
describes different states of a component in a system. The states are specific to a component/object
of a system.

AStatechartdiagramdescribesastatemachine.Nowtoclarifyitstatemachinecanbedefined
asamachinewhichdefinesdifferentstatesofanobjectandthesestatesarecontrolledbyexternalor
internalevents.

Activity diagram explained in next chapter, is a special kind of a Statechart diagram. As
Statechart diagram defines states it is used to model lifetime of an object.

Purpose:

StatechartdiagramisoneofthefiveUMLdiagramsusedtomodeldynamicnatureofasystem. They
define different states of an object during its lifetime. And these states are changed by events. So
Statechart diagrams are useful to model reactive systems. Reactive systems can be defined as a system
that responds to external or internalevents.

Statechart diagram describes the flow of control from one state to another state. States are
defined as a condition in which an object exists and it changes when some event is triggered. So the
most important purpose of Statechart diagram is to model life time of an object from creation to
termination.

Statechart diagrams are also used for forward and reverse engineering of a system. But the
main purpose is to model reactive system.

Following are the main purposes of using Statechart diagrams:
To model dynamic aspect of asystem.
To model lifetime of a reactivesystem.

e To describe different states of an object during itslifetime.
e Define a state machine to model states of anobject.

How to draw Statechart Diagram?

Statechart diagram is used to describe the states of different objects in its life cycle. So the
emphasisisgivenonthestatechangesuponsomeinternalorexternalevents.Thesestatesofobjects are
important to analyze and implement themaccurately.

Statechart diagrams are very important for describing the states. States can be identified as
the condition of objects when a particular event occurs.

Before drawing a Statechart diagram we must have clarified the following points:
e Identify important objects to beanalyzed.
e Identify thestates.
e Identify theevents.

The following is an example of a Statechart diagram where the state of Order object is
analyzed.

The first state is an idle state from where the process starts. The next states are arrived for
events like send request, confirm request, and dispatch order. These events are responsible for state
changes of order object.

During the life cycle of an object (here order object) it goes through the following states and
there may be some abnormal exists also. This abnormal exit may occur due to some problem in the
system. When the entire life cycle is complete it is considered as the complete transaction as
mentioned below.

The initial and final state of an object is also shown below:

UML Activity Diagram
Activity diagram is another important diagram in UML to describe dynamic aspects of the

system.
Activity diagram is basically a flow chart to represent the flow form one activity to another

activity. The activity can be described as an operation of the system.So the control flow is drawn from
one operation to another. This flow can be sequential, branched or concurrent. Activity diagrams
deals with all type of flow control by using different elements like fork, join etc.

Purpose:

The basic purposes of activity diagrams are similar to other four diagrams. It captures the
dynamic behaviour of the system. Other four diagrams are used to show the message flow from one
object to another but activity diagram is used to show message flow from one activity to another.

Activity is a particular operation of the system. Activity diagrams are not only used for
visualizing dynamic nature of a system but they are also used to construct the executable system by
using forward and reverse engineering techniques. The only missing thing in activity diagram is the
message part.

Itdoesnotshowanymessageflowfromoneactivitytoanother.Activitydiagramissometime
considered as the flow chart. Although the diagrams looks like a flow chart but it is not. It shows
differentflowlikeparallel,branched,concurrentandsingle.

So the purposes can be described as:
e Draw the activity flow of asystem.
e Describe the sequence from one activity toanother.

® Describe the parallel, branched and concurrent flow ofthesystem.

How to draw Activity Diagram?

Activity diagrams are mainly used as a flow chart consists of activities performed by the
system. But activity diagram are not exactly a flow chart as they have some additional capabilities.
These additional capabilities include branching, parallel flow, swimlane etc.

Before drawing an activity diagram we must have a clear understanding about the elements
used in activity diagram. The main element of an activity diagram is the activity itself. An activity is a
function performed by the system. After identifying the activities we need to understand how they
are associated with constraints and conditions.

So before drawing an activity diagram we should identify the following elements:
® Activities
® Association
e Conditions
e Constraints

Oncetheabovementionedparametersareidentifiedweneedtomakea mentally outofthe
entireflow. This mentally outisthetransformedintoanactivitydiagram.

The following is an example of an activity diagram for order management system. In the
diagram four activities are identified which are associated with conditions. One important point should
be clearly understood that an activity diagram cannot be exactly matched with the code. The activity
diagram is made to understand the flow of activities and mainly used by the business users.

The following diagram is drawn with the four main activities:
e Send order by thecustomer
® Receipt of theorder

e Confirmorder
e Dispatchorder

After receiving the order request condition checks are performed to check if it is normal or special
order. After the type of order is identified dispatch activity is performed and that is marked as the
termination of the process.

Week-4: For each case study given earlier, construct Use Case Diagram in the
following manner:

USECASE DIAGRAMS:
COLLEGE MANAGEMENT SYSTEM:

LIBRARY MANAGEMENT SYSTEM

e

i
hdd Book)
B
rd
ra
e

4

/Caaa e
AT
/ YT

~

& Changs Password
~_ Change Password

RAILWAY RESERVATION SYSTEM:

ATM:

Enter cardand pin

<o
Check Balance +include %

% / Actor2
Actorl
Withdrawal of money

CUSTOMER SUPPORT SYSTEM:

Create user

,-""'

+E!'X.te nds

Provide service

customer

UBER CAB SYSTEM:

Search for trip details

R e ———— %
R t rid
Navigation engine
+in I:|l..ll:|.E

El-ouk ride

Share trip details

Diriver

Passenger

Week-5 and Week-6: For each case study given earlier, Construct CLASS
Diagram in the following manner:

CLASS DIAGRAMS:
COLLEGE MANAGEMENT SYSTEM:

COLLEGE MANAGEMENT

—+Eorany
+Aatributel
o=t
gt

TN

+dept name
+number of faciltys
=number of students

CSE

+dept name
+number of facitys
+numiber of students

EEE ME

+di=pt nams
+number of faciltys
+numier of students

+d=pt nams
+number of facilys
+numiber of students

+address: String

+check_membership()
+izzue_books()
+renewal()
+collect_fines{)
+add_new_mem{)
+remove_mem(])
+add_book()
+remove_book()
+get_details()
+put_details()

/

+retumn_books()
+pay_fine()
+check_availabilty()

staff

+id: int
+name: String

+pay_fine()
Hoorrow_Dooks()

+suggest_new_tites()

studeant

+id: int
+name: String

book

+pay_fine)
+borrow_bools()

+id: int
+name: String

+add()
+remove()

+numiber of rooms ~dept id +dept id +number of rooms
+dept id +number of rooms +nmnumber of rooms +dept id
+getl) Ly =ges) +g=tl) A +o=t0
+pun e =pue +part() o= | ot
- R . _"_.‘,.-' = -
— s Tl T B U el W W
canreen e EAMK LIBRARY
Tresd e =manger Fcomputers
+rizes +Countng meachin +books
et el +employsss +empioyees
+drinks Trmensy +getD
+ge) +put)
== 2258
memberl title
+id: int +id: int
likrarian +name: Siring +name: Siring
— +Hoorrowe_Emit: String _'__._,_._._-—-—'——ﬁ" +edition: String
=name: Sring +address: String
+id_nac int +add_tile()
+age: int Hoorrovwe_books(]) +remove_tite()

journal

+id: int
+name: String

+add(])
+remaove()

RAILWAY RESERVATION SYSTEM:

train

+irainMo

clark

+id
+name

+fiorm_detials{}
+cancellation_fromi)

Hrainname FA0OreEss
+ags

ticket
+pnrido
=stas
+no_of_person
+chargeTyps

+fare_ami)
*new_ticket()
+delate_tcket])

CUSTOMER SUPPORT SYSTEM:

admin

+admin_id
+nams
+address

+age

+get_admin_details()
+put_admin_details()
+add_service()
+delete_service])
+add_user()
+delete_us=r()

] +tuser d

service

+EEMVICE_type
+sEfVice_name
+sefvice_id
+Emvice_oate
+EEfvice_time

railway system
+id
+name
passenger +reponse()
+name
+gender
+searchTrain() \
+oook_ticket) Syment
+zanche_ticket]]) Py
+pay_charges(} +amaunit
+modify_form{}

caller

+ealler_id

+get_user_details])
+put_user_details(}
+get_sensce_details()
+put_senice_details{)
+get_caller_details()
+put_caller_detail=(}

user

+user_id
=USEr_name
+zenvce_id
+SEMICE_Name
+caller_id
+caller_name

+get_user_detas()
+gut_user_deta’s()
+get_sernice_deta (=)
+gut_service_deta (=)

+raller_name
+caller_ud
+sefvice_name
+service_id
+Usel_name
+user_id

+get_caller_details()
+put_caller_details{)
+get_service_details()
+put_service_details()
+get_user_details])
+put_user_details{)

ATM:

STATE BANK OF INDIA ATM

+money
+employees
+manager

+getl}
+putl}

i &

CREDIT CARD |
“atrm pin
+amount

+get maonsy()

POINTOFSALES:

Customer

+name
+age

ATM

+names
+money
+credit
+dehit

+getl)
+puil()

UNION BAMK ATHM
+money
+employess
+manager

+geu)
+put(}

ANDRA BANK OF INDIA

+money
+employes
+manager

+gea)

A el

- -
DEBIT CARD

“+atm pin
+amount

+put monsyi])

el |

“r&d CHECHK BALANCE

+atm pin
+amount

=zge money ()

ltem

+item number
+item name

+address
+gender

+addDetails()
+getDetails()
h

Address

+adminnumber
+name
+address

+age

A 4

+durability
+datecfcreations

+putltem()
+getltemn()

L
Database

+item
+User
+customer

+gender o5

+addUser()
+deletel)ser()
+addltem()
+deleteltem()
+updateltem()

+address
+admin
+gender

+get_item_details()
+put_item_details()

Week-7: For each case study given earlier, Construct Interaction Diagrams in the following
manner:

SEQUENCE DIAGRAMS:
COLLEGE MANAGEMENT SYSTEM:

| — |m°E"'T | [===—==1] | E— | | —]

=T e e P T T —

-5 I R R N 11

H B - EETLET =
B - ASTENCER Die ISR S

T b R TS H
= 13 - RO B

1= - SAMERMIT Eeoosd

S
LA RAA R AT AR

1S - e TaERrd :

LIBRARY MANAGEMENT SYSTEM:

|5d Sequenceliagraml)

| USER LIERARY COMPUTER

EOOK DATABASE ‘

1: Lagin : 2 - valdate

k s Ak anel

- - - T 4 Process the resul
5 : Login or not login

k

Y
= -

& - Enter Mame of book

.-—l_'i 7 : Search the book !
- T
% : Book found or not u &--Hesolt.ofs ch H

10 : Report an issue 11 - boolk status

T 5

12 : Book issued
13 : logowt

14 : logout successiul

ATM:

sd SsguenceDiagraml)

UsSER

1 : Imzert card

ATM

BAMK

2 : Reguest pin

3 : Enter pin

4 erify

> : Processing

5 : \alid Imvaid

B : Withdraw mom

T : Select Option

=y

10 : CFDSE

9 : Enter Amount

L S sl A

Il Coecicasn '|:|

RAILWAY RESERVATION SYSTEM:

sd S=sguwenceDiagraml /J

6 : Payment done

B Cancelied

I PASSENGER | | RRS I TICKET
1 = Logim
2 : Enguiry .- 2 - Enguiny
4 - Ticket Booked =]
= =8 L S : Booked

T . Reserved

9 : Ticket Cacslsd

I I_— 1@ Arbowrt refundsd

CAB BOOKING SYSTEM:

sd SsguenceDiagraml /.I

=]

BOOKING

: 1:CALL |
: : 2:CHECK THECAR
: 2 CHECKTIME |

0
; 'S R AU RN U VIV Y O - RS VOO SN N AV RO S -
L | 3 STORE S00KMNE '
! 6 - REPLAY : :

- BDOEIMNG

CUSTOMER SUPPORT SYSTEM:

sd Sequenceliagraml /J

admin USER SERVICE CALLER

1:CREATEUSER _ |

2 : CREATE SERVER

ST SERVER T

A BROVIDE SERVER T

T 5 SAVE AND URDATE

6 : TRANSACTION COMPLETED

COLLOBORATION DIAGRAMS:

COLLEGE MANAGEMENT SYSTEM:

sd CommunicationDiagraml)

addStudent

1 : enterstudentinfo
—

student

2

e —

addStudent 3 - emercours

5 : getCourselist

Course

4 : seskapproval
— - _ _
approved Registrationcourse

\ G : registerCourse

Courseregistration

LIBRARY MANAGEMENT SYSTEM:

sd CommumnicationDiagram1)

3 : Validate member T

5 : addbookdeta Is/

transaction

Student record

l% addmemiber

Librarian

] I:-u::}ﬁ;.' i|ahle

ll : book can be issued

\: : check availability of book

& : updatebookstatus

ATM:

sd CommunicationDiagraml)

10 : Input amount
—

9 : Choose options 1 : Input pin
— -

customer ATM screen

12 : Prompt Eploose options

-
13 : prompt amount

|
11 - Prompt input pin
\L: Withdraw money

5 : Insert the card

\ \i: Check money

14 : Deduct morgy
\‘2 - Werify pin

Card Reader Customer Account
-

4 : Return the card

itialisation

3 : open the account
e

RAILWAY RESERVATION SYSTEM:

sd CommunicationDiagraml)

1:LOGIN
2 : ENQUIRY
4 : TICKET BOOKEED

6 : PAYMENT CCDE

CUSTOMER

3 : CANCALLED
~a

10 - AMOUNE REFOUND
RAILWAY RESERVATION SYSTEM

T :RESERVED
5 : BOOKRD

3 : ENQUIRY

TICKET

CAB BOOKING SYSTEM:

sd CommunicationDiagraml)

CUSTOMER

2 : BOOK CAB
T e

CAR

4: BOOKI

8 : PAYMENT DONE
CONFIRMED

GiM

3 : CHEQK ANVALIBILITY GARROVI
1:

CABE BOOKING 5YSTEM

5 : LIST OF PASSENGER
—_—

\%ILT"(DETAILS

7 MANGT DETAILS

PASSENGER

CUSTOMER SUPPORT SYSTEM:

sd CommunicationDiagraml)

ADMIN

IE
‘\\

5 SAVE AND UPDATE

1: CREATE USER
—

ELEATE SERVER

USER

: TARAMSACTION COMPLETED

4 : PROVIDE SERVICES

3:LIST SERVER

CALLER

= il

SERVICE

Week-8: For each case study given earlier, Construct Activity Diagram in the following
manner:

ACTIVITY DIAGRAMS:
COLLEGE MANAGEMENT SYSTEM:

~ ; lagin to the college managomont symm]
L

|chm:.k ussrbawal and pnrrnis:inn:“_

.J'

e T -
A T N e P
y “‘x}r’””’ =N =S,
L4 b3
., / 7 “, A
N L4 .
M’ M
\ b
!)
\ W
| Y
= X - & - - A
Marnage -:D-IIB-QE-J Eﬂa.na;q registrations | | Marage h.GuH:,j
L — - L
— = 1.
— -H(__,- e
T ____.-—"'_'-
e

|~ logout from tha systam] - i,-]
LIBRARY MANAGEMENT SYSTEM:

I E—
e oA \l

e

T—
- .-\--""'-\-.
o T
- 3 T—
- -~ - o —
¥ R 2 y =
| manage branch manags studen book | paralty I
| S
. - L.
I'-. Y e
I| Y ", Y
\ 1Y *, %
! Yy [zdd S d baak| o
or mo i)
P " y! 2pply peralty
|a|:||:| (=g T Ty hr:nch] |'-“:h:| o remon md:’"‘l |-1_ r _J I, |
" A e A
. — = { —
T , e
R-"""-\.___H__ 1'L'\.__ xl- P
- " —
—— LY _J_,.—.a-da hmk]
o, , -
- " i
T e

r

’_ﬂ.aw:.?l';nm
L .c:?," . :I
4
;_,E‘jmcam_;'
————— I//
feakea crd | (-

RAILWAY RESERVATION SYSTEM:

Start

(Admin is Registered

[Admin L

Login ID and Password J‘

Check
Login ID
Password

Invalid
Login/Password

Login to the System
Successfully

y
l Set Userlevel and
L Permissions

Functionalities

Access the Internal
according to permission

End

CUSTOMER SUPPORT SYSTEM:

Select Product

POINT OF SALES:

Select Category

Add to Cart

My Cart

@ item =0 5 lCountinue Shoppingj

Item=0

(Proceed to checkout]

(Order Conﬁrmation)

Customer

POS (Point of Sale) System

Sales Attendant

@ms to buy a Pro@h

7~ Provides the list

of
v\vailable Products

;

CChoose a Product Y-
L

/7~ Shows Product

\Details and Price>

Confirms to buy the ™\
Product

Gives the Payment =

L

C Processing >7
roduct is Ready for
Pick-up or Delivery s

—>€repares the Prod@

ecieves Product

and Reciept =

CR

- &c:eves the Payment

Gecords the Salegn

v

eleases the Produc
and the Reciept

.

= (Notified for New Sa@

Week-9: For each case study given earlier, Construct State Chart Diagram in the following

manner:
STATE CHART DIAGRAMS:
COLLEGE MANAGEMENT SYSTEM:

student logim

E."erifying username andf pas EWDrd\ﬁ

Exit '
imvalid

[Searching username and password l - /

successful logim

- H log out [

E{Searc hing the course categ Dry]

oo -

LIBRARY MANAGEMENT SYSTEM:

wser id and password

Enrolling for the courEe-]
-

| searching the courEeJ

. }{student or faculty Ingin] ond! bmk; |Sear|::h book

request ligrarian for book

k

return book and pay fimﬂ(—_@, | request book
pay the fing return book

[profile update and sign uut] o @

ATM:

Reading card

card reaj

[Chuoaing Transaction e Reading pin

pinAead success

ancel ransaction ™

choosing anothdr transaction

: Ejecting card

Transactiol chosen Finished Trans

Performing Tran mtiun]

RAILWAY RESERVATION SYSTEM:

enter login details P
i - | validation

[availahility [:heck]

enter gelf details
Y

booking fic ketl

booking successful
4
printing

log out

CUSTOMER SUPPORT SYSTEM:

SELF TEST

failure . [ouT OF SERVICE

turn on or s
failure

turnoff or shul AT

SERVICING EUSTCIHEﬂ

UBER CAB SYSTEM:

—I- statechart

G
: T] retry_request
|)

(Requests_vehicle l (Waits_for_assignment

no_vehicle_available l

max_waiting_time_exceeded

(Waits_for_vehicle J (Passenger_gives_up
\ \

O

Q y

moving_in_vehicie

®

Week-10: For each case study given earlier, Construct Component Diagram in the following
manner:

COMPONENT DIAGRAMS:
COLLEGE MANAGEMENT SYSTEM:

S R %i

| Collage

: Data ACCaES

1

| Encrypiion e
T T {0

| Hlam T Suclrity

| Data Access "E

1

Access Comtrol

{Q!lig; | Coursas

Management [= = Encryption
System -1 Data Access P

1 Parsistance
1 4(D—q:
F=====-=-=-- Accass Contral

1 Raglstration

i

1 Jats hccess

1

]

Systarm Admin
of Collegsa

Managemant 0 o L o e e - == Catabase Conneclor
Organizer Faculty Database CD
Data Access | I

LIBRARY MANAGEMENT SYSTEM:

ﬂj Book Library Database
al. W preeeeeREsemmeReel A
— |
)
|
FAY I\ |
1 1 '
1 1 1
1 1 1
: : i
|
Transaction Search |
- . .
I
£ — '
\‘w, |
)
Search Book :
5 /N |
] 1

Bill

ATM:

Customer
Station

ATM
Machine
Bank
Database
Card
Reader

web Page

O

& onlain Transact
web Merchant VIS Sl

RAILWAY RESERVATION SYSTEM:

Rallway
Reservation
System

System Admin
of Rallway
Reservation
System

-=1 Data Access

ATM Transaction

Employee
Station

Data Access

Client
Desktop

Client Desktop
Transaction

Encrypiion

| N .D@
Rooking

(e

Security

Customar

Encryption [

I

Payment

|
1
1 Data Access
1
i

Traln

Route

Data Access

©

Access Control

Persistance

Access Control

Database Conneclor
Database O}

CUSTOMER SUPPORT SYSTEM:

POINT OF SALES:

1

Termimal Windosw

gtqﬁn

—CO—-
O—_

E—

Applcation Server

g Inventary Updation

% Scanming

gmmonm

>

$ Inventory Reports

1

.

Trarsaction

%mwm

g DataBase

%m

Week-11: For each case study given earlier, construct Deployment Diagram in the

following manner:

DEPLOYMENT DIAGRAMS:

COLLEGE MANAGEMENT SYSTEM:

Inter-Connection

» [1
Admin’'s Staff's Student's
Device Device Device

I—ln:ﬁlvﬁwnlu—(Zlf.\n— I L“llt—‘l-‘.—:(‘/H.'H-'(.Ell_\rl— I
Private URL URI
NV | |
Work Station
College System's Printer
System TecPip{Server TCP/IP-
‘ (=)
Database
LIBRARY MANAGEMENT SYSTEM:
checkoutSystem
checkoutBook() void
returnBook() void
User panel searchBooks
e~ search() void
Initializes book search

Log out

Login system

Initializes Admin panel
Register User

Admin panel

Initializes add/remove genres
Initializes add/remove books
Initializes manage users
Initializes fees

Log out

Logout

= «Ilriﬁaizss Login system

manageGenres

addGenre() void
removeGenre() void

manageBooks

addBook() void
removeBook() void

manageUsers

addUsers() void
removeUsers() void

manageFees

addFees() void

ATM:

Cash
Dispenser Display

eceipt
Printer

Card
Reader

Processor
200Mhz Pentum

Memory
64MB

Keypad J

Bank Server

RAILWAY RESERVATION SYSTEM:

Print Server

Network
Inteface

.........

Ce

RRS Database

i

Application Server

!

VWeb Server

4

Administration Sysiem

Client System

T1 network
connection

CUSTOMER SUPPORT SYSTEM:

Bank Server

‘ Customer DB \

Mortgage Application

Mortgage
Application

Real Estate Server

Real Estate
Listing

— »{ Muluple Listings

Individual Machine
TCPNIP TCPHP
—_ Buyer J
-
7
POINT OF SALES:
Work
Station (PC)
| |
TCPIIP POS System TGP
i or
Cords P Cords
| P l
l -
Barcode ‘se.c?pt
rinter
Scanner DB Connector
Scanner Printer Device
Device

System
Server

System
Database

	B.Tech IV Sem CSE
	UML:
	Week-1: Analyze the Requirements for the following Case Studies
	Week-2: Analyze the Requirements for the following Case Studies
	Week-3: Basics of UML
	Week-4: For each case study given earlier, construct Use Case Diagram in the following manner:
	Week-5 and Week-6: For each case study given earlier, Construct Class and Object Diagram in the following manner:
	Week-7: For each case study given earlier, Construct Interaction Diagrams in the following manner:
	Week-8: For each case study given earlier, Construct Activity Diagram in the following manner:
	Week-9: For each case study given earlier, Construct State Chart Diagram in the following manner:
	Week-10:For each case study given earlier, Construct Component Diagram in the following manner:
	Week-11: For each case study given earlier, construct Deployment Diagram in the following manner:

	What is UML?
	Why use UML?
	The Origins of UML
	UML DiagramTypes
	Use-case Diagram
	Class Diagram
	Object Diagram
	Interaction DiagramsShow an interaction between a group of collaborating objects. Two types: Collaboration diagram and sequence diagram Package Diagram
	State Diagram
	Activity Diagram
	Deployment Diagram

	UML Modeling Types
	Structural modeling:
	Behavioral Modeling
	Architectural Modeling

	UML Basic Notations
	Structural Things
	Class Notation:
	Object Notation:
	Interface Notation:
	Collaboration Notation:
	Use case Notation:
	Actor Notation:
	Initial State Notation:
	Final State Notation:
	Active class Notation:
	Component Notation:
	Node Notation:

	Behavioural Things:
	Interaction Notation:
	State machine Notation:

	Grouping Things:
	Package Notation:

	Annotational Things:
	Note Notation:

	Relationships
	Dependency Notation:
	Generalization Notation:
	Extensibility Notation:

	UML Class Diagram
	Purpose:
	How to draw Class Diagram?

	UML Object Diagram
	Purpose:
	How to draw Object Diagram?

	UML Component Diagram
	Purpose:
	How to draw Deployment Diagram?
	UML Use Case Diagram
	Purpose:
	How to draw Use Case Diagram?

	UML Interaction Diagram
	How to draw Interaction Diagram?
	The Sequence Diagram:
	The Collaboration Diagram:

	UML Statechart Diagram
	How to draw Statechart Diagram?

	UML Activity Diagram
	Purpose:
	How to draw Activity Diagram?

